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Abstract. The ab initio molecular dynamics (AIMD) [1] is combined with the heuristic, successive con-
finement method of surveying a potential energy surface (PES) [2], thereby offering a framework for the
simulation study of kinetics and equilibrium properties of metallic clusters. This approach is applied to the
study of Auy, a cluster possessing a simple but specific PES, which consists of very shallow and deep basins
and due to this presents a challenge to the conventional AIMD methods. Among other things, the prob-
abilities of the transitions between isomers have been found, and on this basis, both the time-dependent
and equilibrium populations of the isomers have been calculated for the conditions typical of the NeNePo
experiments [3] in the femtosecond pump-probe spectroscopy.

PACS. 36.40.-c Atomic and molecular clusters — 31.15.Ar Ab initio calculations — 31.15.Qg Molecular

dynamics and other numerical methods

1 Introduction

The understanding of the mechanisms of isomerization
processes in metallic clusters is of great importance both
for the fundamental science and for numerous applications
of the clusters in physics, chemistry and biology. For this,
joint efforts from theory, experiment and computer simu-
lations are required.

One rapidly developing field of experimental studies,
which offers a close connection with simulations, is the
femtosecond pump-probe spectroscopy of small clusters,
in particular, the NeNePo technique [3]. It involves the
preparation of an initial ensembles of the clusters in the
anionic ground state, one-photon detachment by the pump
pulse, the propagation of the system on the neutral elec-
tronic state, and the detection wvia the cationic ground
state by a time-delayed ionizing probe pulse. The AIMD
simulation study of the NeNePo process for a set of small
metallic clusters has been performed in [1].

The goal of this paper is to work out a more general
framework for the simulation study of metallic clusters.
One approach, which has become conventional in molecu-
lar dynamics (MD) studies, is due to Stillinger and Weber
(SW) [4], who suggested to quench the system at regu-
lar intervals in order to map the MD trajectory on the
potential energy surface (PES). The approach is of a mul-
tipurpose character, allowing one to sample the PES of
a system and to determine its equilibrium properties and
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kinetics. However, because of following the inherent dy-
namics of the system, computationally this approach is
not as efficient as desirable. An example of this is given by
Auy, whose PES consists of very shallow and deep basins,
and thus makes a homogeneous sampling of the PES very
problematic.

A more efficient, heuristic approach, based on the con-
finement MD [5,6], was proposed recently [2]. It involves
a guided sampling of a PES, and at the same time re-
tains a multipurpose character of the SW approach. Here
we implement this approach in the terms of the ab initio
molecular dynamics (AIMD) [1] and apply it to the study
of kinetics and equilibrium properties of Auy.

2 The problem

The Auy cluster exists in the form of 3 isomers, which are
rhombic, T-shape and linear structures [1] (labeled below
as 1, 2 and 3); their characteristics are given in Table 1.
The transition states (T'Ss) presented in Table 2 connect
linear and T-shape isomers and T-shape and rhombic iso-
mers, respectively. A schematic picture of the PES, based
on these data, is shown in Figure 1.

Without restricting generality of the approach to be
considered, let us turn to the conditions typical of the
NeNePo experiments. First, the system is supposed to be
in vacuum, and thus its total energy is conserved. The
detachment by the pump pulse [1] at low temperature oc-
curs for the linear isomer (or related zig-zag structure)
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Table 1. Characteristics of the isomers: energies, U°(a.u.),
harmonic frequencies, #°(cm™"), and vibrational periods (ps).

Isomer 1(D2n) 2(Cav) 3(Doon)
U° ~1.594328 ~1.584677 ~1.567974
v 29.6(1.128) 9.5(3.502)  8.6(3.602)*
3 70.0(0.476)  27.2(1.225) 19.0(1.751)*
8 79.8(0.418)  71.9(0.463)  65.3(0.510)
g 102.8(0.324)  73.9(0.451)  171.8(0.194)
s 149.9(0.222)  171.0(0.195)  179.0(0.186)
vs 171.3(0.195)  184.4(0.181)

# Degenerate bending mode.

Table 2. Characteristics of the transition states: energies,
U*(a.u.), and harmonic frequencies v*(cm™").

TS 1+ 2(01) 2 3(01)
U~ —1.583489 -1.567629
vy 20.1555 7.5694
Vs 60.8404 13.6411
124 102.1918 79.8640
vy 167.7477 160.5021
174 177.3821 174.1527
-1.55
-1.56
2 157
T .1.58
w
-1.59
-1.60

Fig. 1. Schematic picture of the potential energy surface
Of AU.4.

which is the most stable anionic structure. Therefore, we
conducted the simulations introducing the internal energy
of the linear isomer corresponding to the temperature of
about 100 K which is comparable to the TS barrier from
linear isomer to T-shape isomer (108.6 K in temperature
units). Under these conditions, we can expect that the
system lives in the basin for linear isomer very short time,
and when leaving this basin once, hardly returns to it.

In this situation, a straightforward way to obtain sta-
tistically representative data on the behaviour of the sys-
tem would be to run a set of the MD trajectories started
in the linear isomer basin at various atomic distortions
and velocities taken from a thermal ensemble. However,
since the TS barrier is very low, the thermalization of the
system in this basin is difficult to achieve in a conventional
way, i.e. by allowing the system to live in the basin for a
sufficient time before leaving it.

An alternative approach, which not only solves this
particular problem but is applicable to a variety of other

problems, is a heuristic, successive confinement approach
proposed in [2]. It offers essentially unlimited flexibility in
the distribution of the residence times of a system in dif-
ferent regions of the PES, and thus a possibility to sample
these regions as carefully as desirable.

3 Approach and computational background

The essential idea behind the approach is to confine the
MD trajectory of the system successively to various basins
on the PES, with the choice of basins for detailed examina-
tion and the length of time to be spent in the basins [2].
To control the basin that is currently sampled, the MD
trajectory is mapped on the PES by regular identification
of the atomic structures (at time intervals 7). For imple-
mentation of this approach, we need a method to gener-
ate phase trajectory of the system, a routine to identify a
structure, and a procedure to confine the MD trajectory
to a basin.

Ab initio molecular dynamics. To generate a phase tra-
jectory of the system, we employed ab initio MD “on the
fly” (i.e. without precalculation of the PES) based on
the gradient corrected density functional approach with
Gaussian atomic basis [7]. We use 1-electron relativistic ef-
fective core potential (1e-RECP) [8] with the parametriza-
tion given in reference [1]. The energy gradients were cal-
culated analytically. Classical (Newtonian) equations of
motion for nuclei were solved using the Verlet algorithm,
with the time step of numerical integration equal to 1 fs.

Identification of structures. In order to determine to
which isomer a current atomic structure should be re-
lated, we employed a combination of the quenching of
the system with bondlength analysis. For the former,
a standard steepest descent method was used, and for
the latter we consider a bond length matrix B = {b;;},
where b;; is the length of the bond between ith and jth
atoms. Beforehand, each isomer (Tab. 1) was character-
ized by its potential energy U%! and bond length matrix
B! = {b?]il}, where [ (=1, 2, 3) labels the isomers. With
this, the procedure of identification of a current structure
included a repeated set of three operations: (1) quench-
ing the system, (2) calculating the bond length matrix
of the quenched system, and (3) comparing this matrix
with B%! (I = 1,2,3) by calculating the distance in bond
space > | bij — bgjil |. All possible permutations of the
atoms for each isomer, dependent on the symmetry of
the structure, were taken into consideration. The initial
quench was taken to be deep, until the norm of the gra-
dients was as low as 3 x 1079 (all values, here and below,
are in atomic units), and the subsequent quenches were
restricted to 5 successful steps, i.e. the steps leading to a
decrease of the energy. The structure was considered to be
in the basin for a certain isomer if two successive sets of
the operations satisfied the conditions: the potential en-
ergy of the structure at the output of the later set was
lower than that for the preceding one, and this structure
was closer in the bond space to an isomer, to which it was
closest in the preceding set. This approach allowed us to
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reduce the total number of evaluations of potential energy
and gradients, which were required to identify a structure,
approximately to one hundred, in average.

Confinement of the MD trajectory. When the system
is supposed to be confined to a certain basin but is found
outside this basin, it has to be returned into the basin. One
way to do this, that was used in this work, is to place the
system (i.e. its representative point) at the point where
the system was found in the given basin last time, but
instead of the atomic velocities that the system had at
this point to use random values obeying a Maxwell distri-
bution. Specifically, this procedure includes the following
steps [6]: velocities are randomly chosen from a normalized
Gaussian distribution, then overall translation and rota-
tion of the cluster are excluded, and finally, the velocities
are rescaled so that the kinetic energy of the cluster would
be the same as it was at the point to which the system is
returned.

4 Kinetics

Conventionally, kinetics is described using a master equa-
tion. However, another way is also possible, which is best
suited to the confinement simulations [2]. Confining the
system to a current basin (i), we can calculate the proba-
bility, ¢;i, that the system will be found in basin j (includ-
ing the original one, i) at the subsequent checking after a
time interval 7. These quantities constitute the transition
probability matrix Q(7q) = {¢;(7q)}, which is related to
the rate constant matrix, W = {w;; }, as

Q(7q) = exp(Wry). (1)

Having Q(7q), and treating the transitions between iso-
mers as a Markov process in the discrete time domain of
checking intervals 7,, we can calculate how the popula-
tions of the isomers P = {p;} (3 ,pi = 1) change with
time. They obey the equation
P(t = kry) = Q" (r)P(t = 0) (2)
where P(t = 0) is the vector of initial populations. Each
multiplier in the product QF moves the system on time
step 7q. The equilibrium populations, P°4, are obtained at
t — 00, or can be found from the equation P¢? = QP*®4.
The diagonal elements of the transition probability
matrix, g;;, characterize lifetimes of the isomers. Assum-
ing a Poisson distribution of the lifetimes, for the mean
lifetime of the system in basin ¢ we have
Tiife,i = —Tq/ 11 qis. (3)
A current lifetime can also be estimated directly, calculat-
ing the period of time (the number of checking intervals
of the known length 7,) during which the system did not
leave the basin. Correspondingly, a manifold of the life-
times for a given basin makes possible to build the lifetime
distributions for this basin.

Table 3. Transition probabilities, g;;, for the time interval of
0.1 ps. In brackets, there are given the corresponding values of
¢i; obtained in the direct simulations.

Isomer from/to 1 2 3
1 0.937(0.932)  0.058(0.059)  0.0(-)
2 0. 063(0 068) 0. 942(0 0941)  0.151(-)
3 0.0(0.0) 0.0(00)  0.849(-)

Table 4. Transition probabilities, ¢;;, for the time interval
of 0.1 ps, predicted by the RRKM theory wvia equation (1).
The RRKM rate constants w;; were calculated in the harmonic
approximation, using the data of Tables 1 and 2.

Isomer from/to 1 2 3
1 0.875 0.501 x 107! -
2 0.125 0.949 0.119 x 1072
3 - 0.469 x 105 0.998

5 Results and brief discussion

The MD trajectory was successively confined to basins for
linear, T-shape and rhombic isomers, until it made at least
100 attempts to leave the current basin. The cluster did
not execute the overall translation and rotation, and its
total energy, E, was equal to —1.566067 a.u., which corre-
sponds to the heating of the linear isomer approximately
to 110 K. The checking interval 7, was equal to 0.1 ps.

Note, that in general case, when the variety of isomers
is unknown, first one should find and characterize the iso-
mers. This can be done by surveying the PES with the
help of the successive confinement method [2,6,9].

In the course of the simulation, there were observed
transitions from linear isomer to T-shape one, and also
between T-shape and rhombic isomers. No transition from
T-shape and rhombic isomers to the linear isomer has been
detected. The corresponding transition probabilities are
presented in Table 3. For comparison, Table 4 shows the
values of ¢;; that are predicted by the Rice-Ramsperger-
Kassel-Markus (RRKM) theory [10]. It is seen that if the
barrier is not so small as that for the linear-to-T-shape
transition, the RRKM theory is reasonably accurate. We
can thus suppose that the prediction for the probability of
the transition from the T-shape isomer to the linear one
is also correct, at least by the order of magnitude. Cor-
respondingly, the time required to observe this transition
in the simulations is 10* times larger than it is taken, in
average, for a single act of the transition from the T-shape
isomer to the rhombic one.

Figure 2 shows lifetime distributions for the isomers
and their comparison with the theoretical (Poisson) dis-
tributions based on the mean lifetimes m;g. of Table 5. As
seen, the lifetimes follow the Poisson law and are consis-
tent with the values of mean lifetimes obtained from the
transition probabilities.

Having the transition probabilities, we can use equa-
tion (2) to calculate time-dependent populations of the
isomers for initial conditions of interest. Figure 3 shows
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Fig. 2. Lifetime distributions for (a) rhombic, (b) T-shape, and (c) linear isomers. Solid and empty triangles label the

confinement and direct simulations, respectively. Dashed lines show the Poisson distributions based on the mean lifetimes of

Table 5.

Table 5. Mean lifetimes, calculated from the transition prob-
abilities of Table 3 wvia equation (3), “temperatures” of the
isomers, calculated from the kinetic energies of the system in
the corresponding basins, and the equilibrium populations of
the isomers from Figure 3. In brackets there are given the cor-
responding values found in the direct simulations.

Isomer Tlife, PS T, K pt
1 1.540(1.532)  1221(1225)  0.480(0.464)
2 1.672(1.721)  814(901)  0.520(0.536)
3 0.608(-) 110(-) 0.0(-)
1.0
0 rhombic
LS T-shape
— — —linear

Population

Fig. 3. Time-dependent populations of the isomers.

such populations for a scenario characteristic of the
NeNePo experiments. It is remarkable that though T-
shape isomer is higher in energy than the rhombic one,
which present the ground state atomic configuration of
the cluster, its equilibrium population is higher. A reason
is that the T-shape isomer, looser in constitution, samples
larger conformation space than the compact rhombic iso-
mer, and thus should have a larger conformation entropy.

Along with the confinement simulations we also per-
formed a direct simulation, allowing the system to pass
between the basins freely. The total energy of the system
was as before, and the system started the exploration of

the PES in the basin for linear isomer. The total length of
the run was 0.5 ns (5 x 10° time steps). The system left the
basin for linear isomer in a short time (0.3 ps), and then
kept making the transitions between T-shape and rhombic
isomers (in total, approximately 150 transitions was made
in each direction). In accord with the previously discussed
RRKM estimates, the system never returned in the linear
isomer basin for the given length of time. The results of
the direct simulation are presented in Tables 3 and 5, and
Figure 2, and they are in good correspondence with the
confinement simulation results.
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